7 Theory of constrained optimization
In this chapter, we will introduce tools to characterize (and sometimes, solve) general constrained optimization problems of the form
minimize f 0 ( x ) subject to f i ( x ) ≤ 0 i = 1 , … , m h i ( x ) = 0 i = 1 , … , p \begin{array}{lll}
\text{minimize} & f_0(x) & \\
\text{subject to} & f_i(x) \leq 0 & i = 1, \ldots, m\\
& h_i(x) = 0 & i = 1, \ldots, p
\end{array} minimize subject to f 0 ( x ) f i ( x ) ≤ 0 h i ( x ) = 0 i = 1 , … , m i = 1 , … , p This problem is not necessarily convex . However, as we will see, certain tools rely on the assuming that (1) is a convex problem. This will be clearly stated in the text.
Recall from Chapter 1 some important notions. The constraint set of (1) is given by
Ω = { x ∈ R n ∣ f i ( x ) ≤ 0 , i = 1 , … , m , h i ( x ) = 0 , i = 1 , … , p } \Omega = \left\lbrace x \in \mathbb{R}^n \mid f_i(x) \leq 0, \: i = 1, \ldots, m, \quad
h_i(x) = 0, \: i = 1, \ldots,p\right\rbrace Ω = { x ∈ R n ∣ f i ( x ) ≤ 0 , i = 1 , … , m , h i ( x ) = 0 , i = 1 , … , p } whereas its domain is
D = ⋂ i = 0 m dom f i ∩ ⋂ j = 1 p dom h j . \mathcal{D} = \bigcap_{i=0}^m \dom f_i \;\cap\; \bigcap_{j=1}^p \text{dom}\, h_j. D = i = 0 ⋂ m dom f i ∩ j = 1 ⋂ p dom h j . The feasible set is then
F = D ∩ Ω = { x ∈ D ∣ f i ( x ) ≤ 0 , i = 1 , … , m , h j ( x ) = 0 , j = 1 , … , p } . \mathcal{F} = \mathcal{D} \cap \Omega = \{ x \in \mathcal{D} \mid f_i(x) \leq 0, i=1, \ldots, m,\; h_j(x) = 0, j=1, \ldots, p \}. F = D ∩ Ω = { x ∈ D ∣ f i ( x ) ≤ 0 , i = 1 , … , m , h j ( x ) = 0 , j = 1 , … , p } . Recall that the optimal value of the problem (1) is given by
p ⋆ = inf x ∈ F f 0 ( x ) p^\star = \inf_{x \in \mathcal{F}} f_0(x) p ⋆ = x ∈ F inf f 0 ( x ) and p ⋆ = + ∞ p^\star = + \infty p ⋆ = + ∞ whenever the problem is unfeasible , i.e., F = ∅ \mathcal{F} = \emptyset F = ∅ . See also this page in Chapter 1 for a review of the vocabulary.
For convex problems , the constraint set Ω \Omega Ω is defined by
Ω = { x ∈ R n ∣ f i ( x ) ≤ 0 , i = 1 , … , m , a i ⊤ x = b i , i = 1 , … , p } \Omega = \left\lbrace x \in \mathbb{R}^n \mid f_i(x) \leq 0, \: i = 1, \ldots, m, \quad
a_i^\top x = b_i, \: i = 1, \ldots,p\right\rbrace Ω = { x ∈ R n ∣ f i ( x ) ≤ 0 , i = 1 , … , m , a i ⊤ x = b i , i = 1 , … , p } where
the inequality constraints are such that the functions f i f_i f i , i = 1 , … , m i=1, \ldots, m i = 1 , … , m are convex functions
the equality constraints h i ( x ) = a i ⊤ x − b i h_i(x) = a_i^\top x - b_i h i ( x ) = a i ⊤ x − b i are affine functions .
Introduction to Lagrange duality : Lagrangian, Lagrange dual function, dual problem
Notion of weak and strong duality ; Slater’s criterion for convex problems
Optimality conditions: Karush-Kuhn-Tucker (KKT) conditions
Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization . Cambridge University Press.