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ABSTRACT

Quaternion multiway arrays appear naturally as compact rep-
resentations of 3D or 4D multidimensional signals. However,
the non-commutativity of quaternion multiplication prevents
a straightforward extension of standard tensor algebra to ana-
lyze and process quaternion multiway arrays. After reviewing
the theoretical difficulties related to quaternion tensor alge-
bra, we propose the first construction of quaternion tensors
as representation of dedicated quaternion multilinear forms.
This theoretical construction ensures that usual tensor alge-
braic properties, such as mode products properties are pre-
served. This novel framework enables us to generalize Tucker
and canonical polyadic tensor decompositions to the quater-
nion case. For the latter, we carefully design a full quaternion
ALS-type algorithm. Its relevance is validated numerically.

1. INTRODUCTION

Quaternions generalize complex numbers in four dimensions.
The popularity of quaternions in signal and image processing
stems from their ability to represent 3D and 4D vectors as sin-
gle quaternion scalars. This enables compact algebraic repre-
sentations together with many geometric insights such as 3D
rotations. Multiway arrays of quaternions appear whenever
3D or 4D vector data is acquired with respect to one or more
diversities (time, space, wavelength, etc.). Examples include
RGB color imaging [1–4], polarized source separation [5],
vector array processing [6,7], wind and temperature forecast-
ing [8], to cite only a few. So far, most of the research has fo-
cused on developing methodologies for dealing with quater-
nion vectors and matrices, which does not permit a proper
account for multiple (> 2) diversities. Just like in the real and
complex case, there is the need to develop a mathematically
grounded framework for quaternion multiway arrays, namely
a meaningful quaternion tensor algebra. The lack of such
framework can be explained by the noncommutativity of the
quaternion product, which prevents a direct extension of clas-
sical real and complex tensor definitions. A few attempts at
defining tensor-like tools for quaternion multiway arrays have
been made recently [9–13]. However, a proper definition of
quaternion tensors based on multilinear arguments remains
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to be established to unlock the development of meaningful
tensor algebra tools in the quaternion case. After explaining
the difficulties inherent to the construction of such a math-
ematical object, we propose a definition of quaternion ten-
sors preserving usual properties of tensor calculus. We revisit
the main tensor decompositions, Tucker and the Canonical
Polyadic Decomposition (CPD), for this new object. Finally,
we introduce a full quaternion domain ALS-like algorithm for
the estimation of the CPD model, whose relevance is demon-
strated by several numerical simulations.

2. PRELIMINARIES

Quaternions. They define a four-dimensional noncommuta-
tive division algebra H over the real numbers R with canon-
ical basis {1, i, j,k}. Here, i, j,k are imaginary units satis-
fying i2 = j2 = k2 = ijk = −1, ij = −ji and ij = k.
Noncommutativity of quaternion multiplication implies that
for any p, q ∈ H, one has pq ̸= qp in general. A quaternion
q ∈ H can be written as q = qa + iqb + jqc + kqd, where
qa, qb, qc, qd ∈ R are its four components. The real part of q is
Re q = qa and its imaginary part is Im q = iqb + jqc + kqd.
The conjugate of q is defined as q∗ = Re q − Im q and its
modulus |q| =

√
qq∗ =

√
q∗q =

√
q2a + q2b + q2c + q2d. For

any p, q ∈ H, one has (pq)∗ = q∗p∗.
Quaternion linear algebra. Similarly to the real and
complex cases, quaternions vectors and matrices can be
defined as 1D and 2D quaternions arrays, respectively.
A quaternion vector q ∈ HN is specified by its entries
(q)i = qi ∈ H and a quaternion matrix A ∈ HM×N by
its elements (A)ij = aij ∈ H. The transpose of A is de-
noted by AT and its conjugate-transpose (or Hermitian) by
AH ≜ (A∗)T = (AT)∗. Importantly, noncommutativity
of quaternion multiplication imposes to consider two sep-
arate definitions for the quaternion matrix product. Given
A ∈ HM×N ,B ∈ HN×P , one distinguishes between left
and right quaternion matrix products:

(A ·LB)ij ≜
N∑

k=1

aikbkj and (A ·R B)ij ≜
N∑

k=1

bkjaik .

Note that A ·L B ̸= A ·R B in general. These two products
satisfy several different algebraic properties [14] such as:



• transposition : (A ·L,R B)
T
= BT ·R,L AT;

• conjugation : (A ·L,R B)
∗
= A∗ ·R,L B∗;

• conjugate-transposition : (A ·L,R B)
H
= BH ·L,RAH.

For more details on quaternion linear algebra, we refer the
reader to [15, 16] and the references therein.
Quaternion vector spaces. Extending the notion of vec-
tor space to quaternions is relatively straightforward [17].
Nonetheless, noncommutativity of quaternion multiplication
imposes once again the distinction between left and right
vector spaces, depending from which side the scalar multipli-
cation is performed. Subscripts L and R indicate the nature
of the vector space considered. For instance, HM

L is a left
quaternion vector space of dimension M : for every q ∈ HM

L

and every λ ∈ H, left linearity reads λq ∈ HM
L . The ap-

proach holds for right quaternion vector spaces such as HM
R ,

where ∀q ∈ HM
R ,∀λ ∈ H, qλ ∈ HM

R .

3. TENSORS ON H: DEFINITIONS, PROPERTIES

3.1. Quaternion multilinearity: a wild goose chase?

Consider D quaternion vector spaces Sd, 1 ≤ d ≤ D. For
now, we do not specify left or right linearity. Let f : S1 ×
S2 × . . . × SD → H be a quaternion-valued function of D
quaternion vector variables. If we require f to belong to a
class of multilinear functions (f be linear in each one of its
D arguments), then several important issues must be faced.
The particular case D = 3 is sufficient to illustrate our pur-
pose. Let f(x1,x2,x3) be left-linear in each argument, that
is ∀α, β ∈ H,∀xd,yd ∈ Sd (d = 1, 2, 3) :

f(αx1 + βy1,x2,x3) = αf(x1,x2,x3) + βf(y1,x2,x3) (1)
f(x1, αx2 + βy2,x3) = αf(x1,x2,x3) + βf(x1,y2,x3) (2)
f(x1,x2, αx3 + βy3) = αf(x1,x2,x3) + βf(x1,x2,y3) (3)

Computing f(αx1, βx2,x3) for α, β ∈ H is then trou-
blesome. Indeed changing the order in which linearity
properties (1) – (3) are applied yields different results.
Starting with (1) and then (2) gives f(αx1, βx2,x3) =
αβf(x1,x2,x3), whereas applying the reversed order yields
f(αx1, βx2,x3) = βαf(x1,x2,x3). Since multiplication
in H is noncommutative, αβ ̸= βα and thus βαf(x1,x2,x3) ̸=
αβf(x1,x2,x3). Similar contradictions are observed for any
other choice of variables or change of linearity properties of f
and Sd (all right-linear, mixed between left and right-linear).
Therefore, in general, there is no such thing as quaternion
multilinearity. This might explain the scarcity of theoretical
results on quaternion-valued tensors in the literature.

3.2. A general class of quaternion linear forms

To workaround this intrinsic quaternion multilinearity issue,
we propose a general class of quaternion-valued (multi-)linear

forms that satisfies several important elementary properties
while preserving the nice algebraic calculus of quaternions.
The definition of this class is the cornerstone of the proposed
quaternion tensors framework introduced in the next section.
In order to extend relevant multilinearity-like properties to the
quaternion linear form f , it is necessary to restrict the nature
of the different vectors spaces Sd defining the domain of f .
More precisely, let us suppose that:

• S1 = HN1

L is a left quaternion vector space;

• SD = HND

R is a right quaternion vector space;

• S2 = RN2 , . . . ,SD−1 = RND−1 are real vector spaces.

This setting defines a class of quaternion-valued linear forms
f : HN1

L × RN2 × . . . × RND−1 × HND

R → H that satisfies
multilinearity properties specific to quaternion algebra:

• left quaternion linearity for d = 1:

∀α, β ∈ H,x1,y1 ∈ HN1

L

f(αx1 + βy1, . . .) = αf(x1, . . .) + βf(y1, . . .);
(4)

• right quaternion linearity for d = D :

∀α, β ∈ H,∀xD,yD ∈ HND

R

f(. . . ,xDα+ yDβ) = f(. . . ,xD)α+ f(. . . ,yD)β;
(5)

• real linearity for 2 ≤ d ≤ D − 1 :

∀α, β ∈ R,∀xd,yd ∈ RNd

R

f(. . . , αxd + βyd, . . .) = f(. . . ,xdα+ ydβ, . . .)

= αf(. . . ,xd, . . .) + βf(. . . ,yd, . . .)

= f(. . . ,xd, . . .)α+ f(. . . ,yd, . . .)β.

(6)

We call a function f satisfying (4)–(6) HR-multilinear, since
it involves a mix between real and quaternion linearity prop-
erties. It is worth noting that, if f is HR-multilinear, by defi-
nition it is also R-multilinear.
Remark. The ordering of left and right quaternion vector
spaces together with that of the real vector spaces is com-
pletely arbitrary and can be permuted if necessary. Our con-
vention here permits to simplify the presentation.

3.3. Quaternion tensors as quaternion linear forms

The core of the proposed approach lies in associating a quater-
nion tensor T with a quaternion HR-multilinear form f , as
defined in Section 3.2. This approach follows a standard way
to define tensors as coefficients in a given Cartesian product
basis of a certain multilinear form [18]. Let Nd = dimSd and
{e(d)id

}id=1:Nd
be a basis of vector space Sd. We then define

Ti1i2...iD ≜ f
(
e
(1)
i1

, e
(2)
i2

, . . . , e
(D)
iD

)
(7)

i.e. T ∈ HN1×N2×...×ND represents the multidimensional
quaternion-valued array of coefficients of f in the Cartesian
product basis {e(1)i1

}i1=1:N1
× . . .× {e(D)

iD
}iD=1:ND

.



3.4. n-mode product properties

The definition of a quaternion tensor (7) relies on a particular
choice of the underlying vector spaces. This choice makes
it possible to extend classical tensor operations to the quater-
nion case, while preserving essential tensor algebra proper-
ties. The n-mode product is one of these operations. Since
the considered vector spaces have different linearity proper-
ties, we distinguish once again between 1-mode product, D-
mode product and d-mode products (2 ≤ d ≤ D − 1):

• 1-mode product defined as the left quaternion matrix
product by U ∈ HJ×N1 :

(
T ×L

1 U
)
ji2...iD

≜
N1∑
i1=1

uji1Ti1i2...iD . (8)

• D-mode product defined as the right quaternion matrix
product by U ∈ HJ×ND :

(
T ×R

D U
)
i1...iD1

j
≜

ND∑
iD=1

Ti1i2...iDujiD . (9)

• d-mode product defined as the real matrix product by
U ∈ RJ×Nd :

(T ×d U)i1...j...iD ≜
Nd∑
id=1

Ti1...id...iDujid . (10)

Note that the position of ujid is arbitrary in the last equation
since it is real-valued. We use subscripts L or R to indicate
the type of quaternion matrix multiplication involved. An-
other benefit of the definition of a quaternion tensor (7) is that
it permits to preserve the classical properties of successive
n-mode products [19]: (i) commutativity between distinct
modes and (ii) matrix composition between identical modes.
Other choices of (multilinearity) properties of f do not allow
for preserving such nice, yet also fundamental, properties.

Proposition 1 (Commutativity). Let T ∈ HN1×N2×...×ND ,
U1 ∈ HJ1×N1 ,UD ∈ HJD×ND and Ud ∈ RJd×Nd . The
following properties are satisfied:

T ×L
1 U1 ×R

D UD = T ×R
D UD ×L

1 U1, (11)

T ×L
1 U1 ×d Ud = T ×d Ud ×L

1 U1, (12)

T ×d Ud ×R
D UD = T ×R

D UD ×d Ud. (13)

Proposition 2 (Composition). Let T ∈ HN1×N2×...×ND ,
U ,V matrices with entries in appropriate sets (H or R) and of
adequate dimensions. The following properties are satisfied:

T ×L
1 U ×L

1 V = T ×L
1 (V ·L U), (14)

T ×R
D U ×R

D V = T ×R
D (V ·R U), (15)

T ×d U ×d V = T ×d (V U). (16)

Proofs of Prop. 1 and 2 are found by direct calculations.

4. QUATERNION TENSOR DECOMPOSITIONS

Low-rank quaternion tensor decompositions of a given tensor
T can now be easily formulated from successive n-modes
products applied to a (core) tensor S of smaller dimensions.
We introduce below the Tucker and Canonical Polyadic De-
compositions (Q-CPD) for quaternions tensors. For simplic-
ity, we restrict ourselves in this section to quaternions tensors
of order three – extension to higher orders is straightforward.

4.1. Quaternion Tucker decomposition

Consider a quaternion core tensor S ∈ HF1×F2×F2 and 3
factor matrices A ∈ HN1×F1 ,B ∈ RN2×F2 ,C ∈ HN3×F3 .
The Tucker decomposition of T ∈ HN1×N2×N3 is given by:

T = S ×L
1 A×2 B ×R

3 C ≜ [[S;A,B,C]]. (17)

Each element Ti1i2i3 of T reads explicitly

Ti1i2i3 =

F1∑
j1=1

F2∑
j2=1

F3∑
j3=1

ai1j1Sj1j2j3bi2j2ci3j3 . (18)

Recall that, unlike the real/complex cases, quantities in (18)
do not commute with one another, excepted for bi2j2 ∈ R.

4.2. Quaternion CPD

The Q-CPD can easily be deduced from the quaternion
Tucker decomposition by considering a diagonal core ten-
sor S ∈ HF×F×F with F = F1 = F2 = F3. The Q-CPD is
written as T = [[λ;A,B,C]], with λ ∈ HF corresponding
to the diagonal of S. Every element Ti1i2i3 of T reads:

Ti1i2i3 =

F∑
f=1

ai1fλfbi2fci3f , (19)

where λf ∈ H is interpreted as a quaternion-valued scaling
factor for the f th rank-1 term of the Q-CPD.
Ambiguities. Without any loss of generality, assume that
S is the identity tensor such that the Q-CPD can be ex-
pressed as T = [[A,B,C]]. Then, (19) shows that even
if the Q-CPD is unique, it suffers from several trivial am-
biguities. The first one is classical, order ambiguity, and
is obtained by joint permutation of columns of the fac-
tor matrices T = [[A,B,C]] = [[AΠ,BΠ,CΠ]], with
Π ∈ RF×F a permutation matrix. In contrast, the scaling
ambiguity differs from the standard real and complex cases,
i.e. T = [[A,B,C]] = [[A ·L Γ1,BΓ2,C ·R Γ3]], with
Γ1,Γ3 ∈ HF×F , and Γ2 ∈ RF×F diagonal matrices such
that (Γ1 ·LΓ3)Γ2 = IF , with IF the (F ×F ) identity matrix.
Provided that quaternion-valued scalings are computed with
special care due to noncommutativity, practical handling of
Q-CPD ambiguities follows closely that of the standard real
and complex tensor case.
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Fig. 1: Simulation results. (a) Median errors with respect to the SNR; (b) Median errors with respect to the rank (no noise)

Mode unfoldings. A key benefit of the proposed representa-
tion of quaternion tensors (7) is that one can easily write ten-
sor mode unfoldings models for Q-CPD (19), using Khatri-
Rao products as for real/complex tensors. Once again, matrix
operations such as Kronecker or Khatri-Rao products must
distinguish between left and right products. The three mode
unfoldings of the quaternion CPD model (19) are given by

T(1) = A ·L (C ⊙R B)T, (20)

T(2) = B ·L (C ⊙R A)T, (21)

T(3) = C ·R (B ⊙R A)T. (22)

where ⊙R denotes the right-sided Khatri-Rao product [14].

5. Q-CPD ALGORITHM

5.1. Quaternion matrix least squares

The design of a quaternion-domain CPD alternating least
squares (ALS) algorithm involves solving two different kind
of quaternion matrix least squares subproblems, depending
on the nature (left/right) of quaternion matrix multiplication:

X̂L = argmin
X

∥M −X ·L N∥2F, (23)

X̂R = argmin
X

∥M −X ·R N∥2F, (24)

where ∥ · ∥F denotes the Frobenius norm of a matrix. The so-
lution to (23) is known from [20] and relies on the theory of
quaternion derivatives for cost functions (the so-called gener-
alized HR-calculus [21]). It explicitly reads

X̂L = M ·L NH ·L
(
N ·L NH

)−1
. (25)

To find the solution X̂R to (24), we first exploit the properties
of left and right-sided matrix products such that ∥M −X ·R
N∥2F = ∥MT − NT ·L XT∥2F. Back to results provided
in [20], we pose Y = XT and obtain the minimizer as Ŷ =(
N∗ ·L NT

)−1 ·L N∗ ·L MT. Further simplifications yield:

X̂R = M ·R NH ·R
[(
N∗ ·L NT

)−1
]T

. (26)

5.2. Q-ALS for Q-CPD

Quaternion ALS (Q-ALS) is an iterative block coordinate op-
timization algorithm. After initialization, each iteration con-
sists in computing the least squares updates of the factor ma-
trices from the one obtained at the previous iteration. Using
unfoldings (20)-(22) and the quaternion matrix least squares
updates given in (23)-(24), the Q-ALS updates are given by:

A← T(1) ·L (C ⊙R B)∗ ·L
(
(C ⊙R B)T ·L (C ⊙R B)∗

)−1

B ← Re

{
T(2) ·L (C ⊙R A)∗ ·L

(
(C ⊙R A)T ·L (C ⊙R A)∗

)−1
}

C ← T(3) ·R (B ⊙R A)∗ ·R
[(

(B ⊙R A)H ·L (B ⊙R A)
)−1

]T

.

To obtain the B-update, we solved the problem as if B was
a quaternion matrix and projected the solution onto the reals.

6. NUMERICAL SIMULATIONS AND DISCUSSION

Numerical simulations aims at: i) demonstrating that the CPD
can be computed in practice and ii) showing that the pro-
posed algorithm behaves similarly to the real and complex
ALS. We built 200 tensors of size 10× 10× 10 according to
(19) with F = 4 and Gaussian random i.i.d. factors matrices.
We then added quaternion circular white Gaussian noise with
prescribed signal to noise ratio (SNR). Q-ALS reconstruction
performance was monitored using the relative mean-square
error (rMSE) between estimated arrays and ground truth.

Fig. 1(a) plots the median value of the rMSE of estimated
tensors and factor matrices. As expected, these values regu-
larly decrease with the SNR. This shows that Q-ALS is rele-
vant from a computational point of view. Its behavior seems
similar to the standard ALS used for real/complex tensors.
Fig. 1(b) shows that Q-ALS suffers from the same limitations
as ALS: its performances decrease when the rank gets larger
than tensor dimensions. This simulation uses noise-free ten-
sors of size 5× 5× 5 for varying rank values. This illustrates
some of the research effort that must be made to devise effi-
cient algorithms for the Q-CPD, and more generally, toward
the design of new models and algorithms for the emerging
field of quaternion tensors.



7. REFERENCES
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